LETTERS TO THE EDITOR

FORMATION OF ADDUCTS OF PYRILIUM CATIONS WITH TRIETHYL PHOSPHITE

M. A. Kostogryz¹, A. A. Boumber², I. A. Profatilova², and M. S. Korobov¹

Keywords: pyrilium salts, triethyl phosphite, electron-acceptors, nucleophilic addition, UV, ¹H and ³¹P NMR spectroscopy.

The physicochemical properties of σ -adducts of aromatic heterocyclic cations hold interest since study of the reversible rupture and formation of a σ -bond between a heteroelement and carbon is possible for these compounds [1]. In turn, such behavior is extremely important for understanding the mechanism of the Arbuzov rearrangement, in which $(R^1O)_3P^+$ – R^2 salts are intermediates [2].

UV, ¹H NMR, and ³¹P NMR spectroscopy in acetonitrile was used to study the reaction of a pyrilium or thiapyrilium salt with triethyl phosphite (P(OEt)₃).

 $\begin{array}{l} 1 \ R = R^4 = Ph, \ R^1 = R^2 = R^3 = H; \ \textbf{2} \ R = R^4 = Ph, \ R^1 = R^2 = R^3 = H; \ \textbf{3} \ R = R^4 = Ph, \\ R^1 = R^3 = H, \ R^2 = Me; \ \textbf{4} \ R + R^1 = -CH = CH - CH = CH -, \ R^2 = R^3 = H, \ R^4 = Ph; \\ \textbf{5} \ R + R^1 = -CH = CH - CH = CH - CH = CH - ; \ \textbf{1,4,5} \ X = O, \ \textbf{2,3} \ X = S \end{array}$

Pyrilium salts **1a-5a** are yellow-green in acetonitrile. Decoloration is noted upon the introduction of $P(OEt)_3$ to the pyrilium salt solutions studied, while the intensity of the absorption band with λ_{max} 395 nm decreases with increasing reagent concentration.

1342 0009-3122/07/4310-1342©2007 Springer Science+Business Media, Inc.

¹Physical and Organic Chemistry Research Institute, Southern Federal University, Rostov-on-Don 344090, Russia; e-mail: boom@ipos.rsu.ru and ²Southern Science Center, Russian Academy of Sciences, Rostov-on-Don 344006, Russia; e-mail: ssc-ras@mmbi.krinc.ru. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 10, pp. 1581-1582, October, 2007. Original article submitted August 22, 2007.

The pyrilium-pyran transition to give a triethoxyphosphonium species was detected by ¹H and ³¹P NMR spectroscopy. An *sp*³-hybridized carbon atom appears upon the formation of the pyran adduct and there is a shift of the protons of the pyrilium or thiapyrilium ring from low field to high field. Spin-spin coupling is noted with the phosphorus atom, which indicates transition of the pyrilium salt to pyran with formation of a tetracoordinated phosphorus atom. The finding of an upfield shift for H-8 proton and coupling of this proton with ³¹P unequivocally demonstrates the existence of pyran form **5b** rather than pyrilium salt form **5a**.

The ¹H and ³¹P NMR spectra were taken on a Varian Unity-300 spectrometer at 300 and 121.5 MHz, respectively, in deuteroacetonitrile with TMS and triphenyl phosphate as the internal standards. The spectra were obtained by adding a twofold excess of reagent ($c = 2 \cdot 10^{-2}$ M) to a solution of the starting salt ($c = 10^{-2}$ M).

(2,6-Diphenyl-4H-pyran-4-yl)triethoxyphosphonium Perchlorate (1b). ¹H NMR spectrum, δ , ppm (*J*, Hz): 7.78-7.82 (4H, m, *o*-C₆H₅); 7.49-7.52 (6H, m, *m*,*p*-C₆H₅); 5.54 (2H, dd, *J*_{H-P} = 3.9, *J*_{H-H} = 4.8, H- β); 4.44 (1H, dt, *J*_{H-P} = 21.7, *J*_{H-H} = 4.8, H- γ); 4.58 (6H, m, CH₂); 1.45 (9H, m, CH₃). ³¹P NMR spectrum, δ , ppm: 33,43 (m).

(2,6-Diphenyl-4H-thiapyran-4-yl)triethoxyphosphonium Perchlorate (2b). ¹H NMR spectrum, δ , ppm (*J*, Hz): 7.59-7.69 (4H, m, *o*-C₆H₅); 7.42-7.52 (6H, m, *m*,*p*-C₆H₅); 5.92 (2H, dd, *J*_{H-H} = 6.4, *J*_{H-P} = 4.9, H- β); 4.89 (1H, dt, *J*_{H-H} = 6.4, *J*_{H-P} = 27.8, H- γ); 4.60 (6H, m, CH₂); 1.47 (9H, m, CH₃). ³¹P NMR spectrum, δ , ppm: 32.77 ppm (m).

(4-Methyl-2,6-diphenyl-4H-pyran)triethoxyphosphonium Perchlorate (3b). ¹H NMR spectrum, δ, ppm (*J*, Hz): 7.40-8.40 (10H, m, C₆H₅); 5.45 (2H, d, $J_{\text{H-P}}$ = 3.6, H-β); 2.83 (3H, s, CH₃); 4.57 (6H, m, CH₂), 1.43 (9H, m, CH₃). ³¹P NMR spectrum, δ, ppm: 34.34 (m).

(4H-Flaven-4-yl)triethoxyphosphonium Perchlorate (4b). ¹H NMR spectrum, δ , ppm (*J*, Hz): 7.20-7.90 (9H, m, Ar); 5.62 (1H, t, *J* = 5.6, H- β); 4.94 (1H, dd, *J*_{H-P} = 5.6, *J*_{H-P} = 22.1, H- γ); 4.47 (6H, m, CH₂); 1.38 (9H, m, CH₃). ³¹P NMR spectrum, δ , ppm: 33.63 (m).

Only **5b** of all the systems studied could be isolated as a solid.

(9H-Xanthen-9-yl)triethoxyphosphonium Perchlorate (5b). ¹H NMR spectrum, δ , ppm (*J*, Hz): 7.2-7.6 (8H, m, Ar); 5.4 (1H, d, *J* = 22.8, H- γ); 4.31 (6H, m, CH₂); 1.27 (9H, m, CH₃). ³¹P NMR spectrum, δ , ppm: 34.07 (m).

REFERENCES

- 1. A. A. Bumber, L. I. Kisarova, E. A. Arzumanyants, V. T. Abaev, and G. A. Palui, *Khim. Geterotsikl.* Soedin., 1042 (1989). [Chem. Heterocycl. Comp., 25, 868 (1989)].
- 2. B. A. Arbuzov, Z. Chem., 14, No. 2, 41 (1974).